Real congruence of complex matrix pencils and complex projections of real Veronese varieties
نویسندگان
چکیده
منابع مشابه
Real Congruence of Complex Matrix Pencils and Complex Projections of Real Veronese Varieties
Quadratically parametrized maps from a real projective space to a complex projective space are constructed as projections of the Veronese embedding. A classification theorem relates equivalence classes of projections to real congruence classes of complex symmetric matrix pencils. The images of some low-dimensional cases include certain quartic curves in the Riemann sphere, models of the real pr...
متن کاملReal Equivalence of Complex Matrix Pencils and Complex Projections of Real Segre Varieties
Quadratically parametrized maps from a product of real projective spaces to a complex projective space are constructed as the composition of the Segre embedding with a projection. A classification theorem relates equivalence classes of projections to equivalence classes of complex matrix pencils. One low-dimensional case is a family of maps whose images are ruled surfaces in the complex project...
متن کاملComparison of congruences and strict equivalences for real, complex, and quaternionic matrix pencils with symmetries
The equivalence relations of strict equivalence and congruence of real and complex matrix pencils with symmetries are compared, depending on whether the congruence matrices are real, complex, or quaternionic. The obtained results are applied to comparison of congruences of matrices, over the reals, the complexes, and the quaternions.
متن کاملEla Comparison of Congruences and Strict Equivalences for Real, Complex, and Quaternionic Matrix Pencils with Symmetries∗
The equivalence relations of strict equivalence and congruence of real and complex matrix pencils with symmetries are compared, depending on whether the congruence matrices are real, complex, or quaternionic. The obtained results are applied to comparison of congruences of matrices, over the reals, the complexes, and the quaternions.
متن کاملPseudo Ricci symmetric real hypersurfaces of a complex projective space
Pseudo Ricci symmetric real hypersurfaces of a complex projective space are classified and it is proved that there are no pseudo Ricci symmetric real hypersurfaces of the complex projective space CPn for which the vector field ξ from the almost contact metric structure (φ, ξ, η, g) is a principal curvature vector field.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2003
ISSN: 0024-3795
DOI: 10.1016/s0024-3795(03)00364-1